31 research outputs found

    Testing the ecological consequences of evolutionary change using elements

    Get PDF
    Understanding the ecological consequences of evolutionary change is a central challenge in contemporary biology. We propose a framework based on the ~25 elements represented in biology, which can serve as a conduit for a general exploration of poorly understood evolution-to-ecology links. In this framework, known as ecological stoichiometry, the quantity of elements in the inorganic realm is a fundamental environment, while the flow of elements from the abiotic to the biotic realm is due to the action of genomes, with the unused elements excreted back into the inorganic realm affecting ecological processes at higher levels of organization. Ecological stoichiometry purposefully assumes distinct elemental composition of species, enabling powerful predictions about the ecological functions of species. However, this assumption results in a simplified view of the evolutionary mechanisms underlying diversification in the elemental composition of species. Recent research indicates substantial intraspecific variation in elemental composition and associated ecological functions such as nutrient excretion. We posit that attention to intraspecific variation in elemental composition will facilitate a synthesis of stoichiometric information in light of population genetics theory for a rigorous exploration of the ecological consequences of evolutionary change.Peer reviewedZoolog

    Ecological stoichiometry beyond Redfield: An ionomic perspective on elemental homeostasis

    Get PDF
    Elemental homeostasis has been largely characterized using three important elements that were part of the Redfield ratio (i.e., carbon: nitrogen: phosphorus). These efforts have revealed substantial diversity in homeostasis among taxonomic groups and even within populations. Understanding the evolutionary basis, and ecological consequences of such diversity is a central challenge. Here, we propose that a more complete understanding of homeostasis necessitates the consideration of other elements beyond C, N, and P. Specifically, we posit that physiological complexity underlying maintenance of elemental homeostasis along a single elemental axis impacts processing of other elements, thus altering elemental homeostasis along other axes. Indeed, transcriptomic studies in a wide variety of organisms have found that individuals differentially express significant proportions of the genome in response to variability in supply stoichiometry in order to maintain varying levels of homeostasis. We review the literature from the emergent field of ionomics that has established the consequences of such physiological trade-offs on the content of the entire suite of elements in an individual. Further, we present experimental data on bacteria exhibiting divergent phosphorus homeostasis phenotypes demonstrating the fundamental interconnectedness among elemental quotas. These observations suggest that physiological adjustments can lead to unexpected patterns in biomass stoichiometry, such as correlated changes among suites of non-limiting microelements in response to limitation by macroelements. Including the entire suite of elements that comprise biomass will foster improved quantitative understanding of the links between chemical cycles and the physiology of organisms.Peer reviewedIntegrative Biolog

    Resisting annihilation: relationships between functional trait dissimilarity, assemblage competitive power and allelopathy

    Get PDF
    Abstract Allelopathic species can alter biodiversity. Using simulated assemblages that are characterised by neutrality, lumpy coexistence and intransitivity, we explore relationships between within-assemblage competitive dissimilarities and resistance to allelopathic species. An emergent behaviour from our models is that assemblages are more resistant to allelopathy when members strongly compete exploitatively (high competitive power). We found that neutral assemblages were the most vulnerable to allelopathic species, followed by lumpy and then by intransitive assemblages. We find support for our modeling in real-world time-series data from eight lakes of varied morphometry and trophic state. Our analysis of this data shows that a lake's history of allelopathic phytoplankton species biovolume density and dominance is related to the number of species clusters occurring in the plankton assemblages of those lakes, an emergent trend similar to that of our modeling. We suggest that an assemblage's competitive power determines its allelopathy resistance

    Understanding variation in salamander ionomes: A nutrient balance approach

    Get PDF
    Ecological stoichiometry uses information on a few key biological elements (C, N, and P) to explain complex ecological patterns. Although factors driving variation in these elements are well-established, expanding stoichiometric principles to explore dynamics of the many other essential elements comprising biological tissues (i.e., the ionome) is needed to determine their metabolic relationships and better understand biological control of elemental flows through ecosystems. 2. In this paper, we report observations of ionomic variation in two species of salamander (Ambystoma opacum and A. talpoideum) across ontogenic stages using specimens from biological collections of two wetlands sampled over a 30-year period. This unique data set allowed us to explore the extent of ionomic variation between species, among ontogenic stages, between sites, and through time. 3. We found species- and to a lesser extent site-specific differences in C, N, and P along with 13 other elements forming salamander ionomes but saw no evidence of temporal changes. Salamander ionomic composition was most strongly related to ontogeny with relatively higher concentrations of many elements in adult males (i.e., Ca, P, S, Mg, Zn, and Cu) compared to metamorphic juveniles, which had greater amounts of C, Fe, and Mn. 4. In addition to patterns of individual elements, covariance among elements was used to construct multi-elemental nutrient balances, which revealed differences in salamander elemental composition between species and sites and changes in elemental proportions across ontogenic development. These multi-elemental balances distinguished among species-site-ontogenic stage groups better than using only C, N, and P. 5. Overall, this study highlights the responsiveness of consumer ionomes to life-history and environmental variation while reflecting underlying relationships among elements tied to biological function. As such, ionomic studies can provide important insights into factors shaping consumer elemental composition and for predicting how these changes might affect higher-order ecological processes

    Does differential iron supply to algae affect Daphnia life history? : An ionome-wide study

    No full text
    The availability of iron (Fe) varies considerably among diet items, as well as ecosystems. Availability of Fe has also changed due to anthropogenic environmental changes in oceanic as well as inland ecosystems. We know little about its role in the nutrition of ecologically important consumers, particularly in inland ecosystems. Physiological studies in several taxa indicate marked effects of dietary Fe on oogenesis. We predicted that differential Fe supply to algae will impact algal Fe concentration with consequences on the life history of the freshwater grazer, Daphnia magna. We found that algal Fe concentration increased with Fe supply, but did not affect algal growth, indicating that the majority of experimental Fe additions were likely adsorbed to, or stored in algal cells. Regardless, data indicate that algal Fe impacted the reproductive traits (age and size at maturity) but not juvenile growth rate of Daphnia. A subsequent experiment revealed that Fe concentration in eggs was significantly higher than the rest of Daphnia. These results indicate that the concentration of Fe in or on algal cells may vary considerably among ecosystems overlying distinct geological formations differing in Fe, possibly with important implications for zooplankton life histories. Understanding the mechanisms underlying this response is unlikely to be accomplished by a strict focus on Fe because we found correlated shifts in the algal ionome, with concomitant ionome-wide adjustments in Daphnia. Information on ionome-wide responses may be useful in better understanding the responses of biota to changes in the supply of any one element.peerReviewe

    Sex in a material world: why the study of sexual reproduction and sex-specific traits should become more nutritionally-explicit

    No full text
    International audienceRecent advances in nutritional ecology, particularly arising from Ecological stoichiometry and the Geometric framework for nutrition, have resulted in greater theoretical coherence and increasingly incisive empirical methodologies that in combination allow for the consideration of nutrient-related processes at many levels of biological complexity. However, these advances have not been consistently integrated into the study of sexual differences in reproductive investment, despite contemporary emphasis on the material costs associated with sexually selected traits (e.g. condition-dependence of exaggerated ornaments). Nutritional ecology suggests that material costs related to sex-specific reproductive traits should be linked to quantifiable underlying differences in the relationship between individuals of each sex and their foods. Here, we argue that applying nutritionally-explicit thought to the study of sexual reproduction should both deepen current understanding of sex-specific phenomena and broaden the tractable frontiers of sexual selection research. In support of this general argument, we examine the causes and consequences of sex-specific nutritional differences, from food selection and nutrient processing to sex-specific reproductive traits. At each level of biological organization, we highlight how a nutritionally-explicit perspective may provide new insights and help to identify new directions. Based on predictions derived at the individual level, we then consider how sex-specific nutrient limitation might influence population growth, and thus potentially broader patterns of life history evolution, using a simple population dynamics model. We conclude by highlighting new avenues of research that may be more accessible from this integrative perspective

    Rudman_SticklebackICPData_171122

    No full text
    ICP data used to construct figures 1A, 2A, and S1
    corecore